首页> 外文OA文献 >Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks.
【2h】

Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks.

机译:使用热响应油墨的石墨烯电极的多材料3D打印用于电化学储能。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The current lifestyles, increasing population, and limited resources result in energy research being at the forefront of worldwide grand challenges, increasing the demand for sustainable and more efficient energy devices. In this context, additive manufacturing brings the possibility of making electrodes and electrical energy storage devices in any desired three-dimensional (3D) shape and dimensions, while preserving the multifunctional properties of the active materials in terms of surface area and conductivity. This paves the way to optimized and more efficient designs for energy devices. Here, we describe how three-dimensional (3D) printing will allow the fabrication of bespoke devices, with complex geometries, tailored to fit specific requirements and applications, by designing water-based thermoresponsive inks to 3D-print different materials in one step, for example, printing the active material precursor (reduced chemically modified graphene (rCMG)) and the current collector (copper) for supercapacitors or anodes for lithium-ion batteries. The formulation of thermoresponsive inks using Pluronic F127 provides an aqueous-based, robust, flexible, and easily upscalable approach. The devices are designed to provide low resistance interface, enhanced electrical properties, mechanical performance, packing of rCMG, and low active material density while facilitating the postprocessing of the multicomponent 3D-printed structures. The electrode materials are selected to match postprocessing conditions. The reduction of the active material (rCMG) and sintering of the current collector (Cu) take place simultaneously. The electrochemical performance of the rCMG-based self-standing binder-free electrode and the two materials coupled rCMG/Cu printed electrode prove the potential of multimaterial printing in energy applications.
机译:当前的生活方式,人口增加和资源有限,导致能源研究处于全球巨大挑战的最前沿,从而增加了对可持续和更高效能源设备的需求。在这种情况下,增材制造带来了以任何期望的三维(3D)形状和尺寸制造电极和电能存储装置的可能性,同时保留了活性材料在表面积和导电性方面的多功能特性。这为能源设备的优化和更高效设计铺平了道路。在这里,我们描述了三维(3D)打印将如何制造定制的设备,这些设备具有复杂的几何形状,并通过设计水性热敏油墨来一步一步地3D打印不同的材料,从而适合特定的要求和应用,例如,印刷用于锂离子电池超级电容器或阳极的活性材料前体(还原的化学改性石墨烯(rCMG))和集电器(铜)。使用Pluronic F127的热敏墨水配方提供了一种水性,坚固,灵活且易于升级的方法。这些设备旨在提供低电阻界面,增强的电气性能,机械性能,rCMG的堆积以及低活性材料密度,同时促进了多组分3D打印结构的后处理。选择电极材料以匹配后处理条件。活性材料(rCMG)的还原和集电器(Cu)的烧结同时进行。基于rCMG的自立式无粘合剂电极和两种材料结合的rCMG / Cu印刷电极的电化学性能证明了多材料印刷在能源应用中的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号